Fast and Flexible Convolutional Sparse Coding | CVPR 2015 (oral)

Felix Heide, Wolfgang Heidrich, Gordon Wetzstein

An extremely efficient and practical approach to convolutional sparse coding. This algorithm has the potential to replace most patch-based sparse coding methods.

Abstract

Convolutional sparse coding (CSC) has become an increasingly important tool in machine learning and computer vision. Image features can be learned and subsequently used for classification and reconstruction tasks. As opposed to patch-based methods, convolutional sparse coding operates on whole images, thereby seamlessly capturing the correlation between local neighborhoods. In this paper, we propose a new approach to solving CSC problems and show that our method converges significantly faster and also finds better solutions than the state of the art. In addition, the proposed method is the first efficient approach to allow for proper boundary conditions to be imposed and it also supports feature learning from incomplete data as well as general reconstruction problems.

FILES

  • technical paperĀ (pdf)
  • source code and datasets (zip)
  • supplement (zip)

 

CITATION

F. Heide, W. Heidrich, G. Wetzstein Fast and Flexible Sparse Convolutional Coding. In Proc. CVPR 2015.

BibTeX

@inproveedings{Heide:2015:cvpr,
author = {F. Heide and W. Heidrich and G. Wetzstein},
title = {{Fast and Flexible Convolutional Sparse Coding}},
booktitle = {Proc. CVPR},
year = {2015},
}